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The Fourier-Galerkin method is used to simulate fluid flows in two and three dimensions, 
on domains with periodic boundary conditions. It is proved that the numerical solution 
converges towards the solution of Navier-Stokes equations. The rate of convergence depends 
on the smoothness of the mathematical solution. Finally, it is shown that the 
Fourier-Gaierkin method can be interpreted as a projection method. This observation may 
lead to more sophisticated convergence proofs. 

INTRODUCTION 

The flow of an incompressible fluid satisfies Navier-Stokes equations. Thus, to 
study turbulent flows-and to test theories about turbulence-one can solve 
Navier-Stokes equations numerically and instead study the numerical solutions. For 
convenience the calculations are normally carried out in a square domain wit 
periodic boundary conditions. The solutions can be obtained by either finite 
difference methods [2, 19,261, finite element methods [ 121, vortex methods 161, cloud 
in cell methods [4] or Fourier methods [ 11, 13, 14, 291. The two schemes used most 
widely to simulate turbulent flows are Arakawa’s difference scheme [I] and the 
Fourier method [30]. In the absence of time-discretization errors and viscous decay 
both methods conserve energy and enstrophy. However, Kreiss and Oliger [23] have 
shown that a one-dimensional analogue of Arakawa’s difference scheme is unstable if 
the discretization in time is done by the leapfrog scheme. Since the differential 
equations describing the flow are non-linear, it is in general difficult to obtain 
convergence results. Chorin (51 and Temam [32] have proved the convergence for 
two finite difference schemes. The convergence of some fmite element methods is 
discussed in the book by Temam [34]. Del Prete and Hald [ 16, 171 have proved the 
convergence of the vortex method, but only for the inviscid case. The purpose of this 
paper is to prove the convergence of the Fourier method applied to N~vier-Stakes 
equations with periodic boundary conditions. 

The Fourier-Galerkin method can be explained as follows. e expand the solution 
of Navier-Stokes equations in a Fourier series and write the rential equations as 
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an infinite system of ordinary differential equations with the Fourier coefficients as 
variables. The system is then truncated by setting all Fourier coefficients, except a 
finite number, identically equal to zero. In this manner Lorentz [27] and Kraichnan 
[22] have derived small systems to model two-dimensional flow. Computations with 
large truncations have only become feasible after the development of the fast Fourier 
transform. Since then the Fourier method has become competitive with finite 
difference methods and has been used extensively in numerical simulations of 
turbulence. For studies in two dimensions see [ll, 13, 14, 191 and for three 
dimensions see [ 291. 

There are two versions of the Fourier method; the Fourier-Galerkin method [30] 
(also called the spectral method) and the collocation method [14] (also called the 
pseudospectral method). Here our terminology follows Gottlieb and Orszag [ 151, but 
it should be mentioned that Kreiss and Oliger [23] introduced the collocation method 
under the name of the Fourier method. In the collocation method the derivatives of a 
function are approximated by interpolating the function at a finite number of points 
by a trigonometric polynomial and evaluating the derivatives of the interpolant 
exactly. An uncritical use of this technique may lead to unstable schemes; see Kreiss 
and Oliger [23]. However, in general even the more complicated stable schemes are 
economically superior to the corresponding Fourier-Galerkin methods, see Fornberg 
[lo] and Kreiss and Oliger [24]. For Navier-Stokes equations with periodic 
boundary conditions Fox and Orszag [14] have developed a pseudospectral method. 
Their scheme conserves energy and is therefore stable. There is also a variant of the 
Fourier-Galerkin technique in which the right-hand side of the differential equations 
is not calculated exactly by the fast Fourier transform, but aliasing errors are 
permitted. The amount of calculations can be reduced by a factor two or more, 
Orszag [30]. The energy for such a scheme may not be conserved. 

The convergence of the collocation method to solve first order hyperbolic 
equations with variable coefficients has been proved by Kreiss and Oliger [23], and 
the result extended to hyperbolic systems by Fornberg [IO]. The convergence of the 
Fourier-Galerkin method for the same class of problems is straightforward and can 
be found in Kreiss and Oliger [24] and Gottlieb and Orszag [ 151. These convergence 
results have not been extended to non-linear problems due to the lack of a priori 
bounds for the solutions of the linearized equations. We circumvent this problem by 
assuming that the solution of the non-linear differential equation is sufficiently 
smooth. This approach has been used previously in convergence proofs for 
Navier-Stokes equations; see Chorin [5] and Hald [ 171. In the proofs below we use 
in addition the fact that the vorticity or the energy is conserved and that the differen- 
tiation commutes with the projection in the Galerkin method. 

The accuracy of the Fourier method has been investigated empirically on a domain 
with periodic boundary conditions by Herring et al. [ 191. They found that with a 
fixed number of frequencies the Fourier method cannot simulate flows with small 
viscosity. This conclusion is incompatible with the results presented here. Basically, 
the viscosity doesn’t really matter. The reason is that on a periodic domain the 
solution of the Navier-Stokes equations tends to the solution of the Euler equations 
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as the viscosity tends to zero; see Ebin and arsden [7]. It is an open question 
whether the corresponding result holds for general bounded domains, and the 
convergence of the Fourier method has not been established for such a case. 

In Section 1 we study the convergence of the Fourier method for inviscid, two- 
dimensional flow. This section is included for pedagogical reasons. The proof is 

mentary and uses the conservation of vorticity, Gers~hgori~~s theorem and 
mkowsky’s inequality. The technique cannot be extended to three Dimensions 

because the vorticity is not conserved in three dimensions. In Section 2 we establish 
the convergence of the Fourier method for Navier-Stokes equations and for Euler’s 
equations in two and three dimensions. Our basic assumption is that the 
mathematical solution exists and is smooth. The proof is more abstract t 
previous one and based on the conservation of energy. 

In Section 3 we will show that the Fourier method is equivalent to a ~~o~ect~~~ 
method, the so-called Faedo-Galerkin method. This observation is not new (see [X, 
p X9]), but it seems that the explicit formula have not been given previously. The 
projection method can be used to establish the existence of solutions to 
Navier-Stokes equations. More precisely, it is shown that there is a s~bseq~e~~~ of 
solutions which converges to a weak solution of the differential equations. If this 
weak solution is a classical solution, then the whole sequence converges. Thus if the 
initial data are sufficiently smooth, then the Fomier method converges for the 
Navier-Stokes equations for all time in two dimensions, and in three dirn~~s~~~s it 
converges for a finite time, which depends on the initial data, but is i~depe~~e~t of Ye 
To prove these propositions it is necessary to check that all the arguments for 
Navier-Stokes equations for a compact domain with smooth boundary can b 
over (or modified) to a domain with periodic boundary co~dit~o~s~ This can 
but we shall not present any details; see Boldrighini [S, Chap. il]* The existence of 
solutions of Euler’s equations for bounded domains in W3 has been eon ered by 
Temam [33 ] and Foias et al. [9]. The convergence of the Fourier method Eulefs 
equations does not follow simply by letting the viscosity tend to zero The reason is 
that the a priori bounds for the solutions of Navier-Stakes equations depend on V-I 
and explode as v tends to zero. Wowever, if the initial data are s~~cientl~ smooth, 
then the viscous ow tends toward the inviscid flow as the viscosity tends to zero. 
This provides an indirect proof for the convergence of the Fourier method for Euler’s 
equations, but gives no indication of the rate of co~ver~e~~~. 

I. CONVERGENCE IN TWO 

In this section we will prove the convergence of the Fourier method for Euler’s 
equations in two dimensions. The convergence proof for the Navier-Stokes equa~~~~s 
is almost identical. We consider the flow of a two-dimensional i~compress~b~~, 
inviscid fluid in a square domain with side length 2n and with periodic boundary 
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conditions. By expanding the vorticity 5(x, y, t) in a Fourier series we find from 
Euler’s equations that the Fourier coefficients &,(f) of 4 satisfy 

G= c CP,CPC 
p+q=k 

(1.1) 
for k=(k,,k,)#O and that 5,-O. Here C,q=~(lql-2--(pl-2))p,q(, where 
p=(pl,pz), Jpl*=p~+p~ and Ip,q1=plq2-p2ql. The sum is taken over all 
integer values of p, and p2 with p z 0. Since the vorticity is real we have C-k = ck for 
all k. If the initial vorticity is three times continuously differentiable, then the solution 
of Eq. (1.1) is unique and exists for all time, see Ebin and Marsden [ 71. 

Let F be the set of frequencies k for which ] k I< N. To truncate Eq. (1.1) we set 
[, E 0 for all k not in F and for all time. Thus we arrive at the Fourier-Galerkin 
method 

tik= c cPqwP% (14 
p+q=k 
p&E.= 

for all k in F. If CC)-~ = djk at t = 0 then it will be satisfied for all time t. We can now 
formulate 

THEOREM 1. Let c& and wk be the solutions of (1.1) and (1.2). Let 2C = 
maxosTstC Ikl I<k(z>l* rf mk=ckfor all k in F at t=O and &,=O then 

Remark. If C(X, y, 0) is three times continuously differentiable then C and the 
sum C ] k)61<k/2 are bounded for all finite t. The Fourier method will therefore 
converge as N tends to infinity. 

Proof: Let ek = wk - [, be the error in the kth Fourier coefficient. It follows from 
Eqs. (1.1) and (1.2) that 

&k= ,zEk %tepeq + iqep + 6peq)-rkT 

p,qeF 

To measure the error we set s2 = CksF Fkek. By differentiating s2 wrt t we see that 

(E2)’ = x e;; c cpq(epeq + 2cqep) - c ckrk + c& 
kcF p+q=k ksF 

p.qsF 
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where C.C. means the complex conjugate expression and we have used that CPq = CyP. 
The conservation of vorticity implies that C CpsckePe, + C.C. is zero. Let e = (ek) and 
r = (rk). We can then rewrite the expression for the error in matrix ~otatiol~ 

(2)’ = 2e*(A + A*)e - e*r - r*e, (3.3) 

where e* is the complex conjugate transpose of e and the kpth element of A -t A* is 
C,, [k-P if k -p is in F and zero otherwise. To estimate the 2-norm of A f A” we use 
Gerschgorin’s theorem. We observe first that / k, p / = 1 k - p, p / < / k - p / / p / for 
IpI (lkl and that /k,pl <lkl Ip-kj for Ipl > lkl. We can therefore bound the 
absolute row sum of the kth row of A + A* by 

Thus llA + A* iI2 < C as A + A* is Hermitian and we conclude from Eq. (1.3) that 

2E.i < 2E2C + 2E /I rl12, 

where /]r]]i = CkEF ]r,]*. By solving this differential inequality we get 

Our next step is to estimate the truncation error r. Since 2 1 C,,,I < I pl /q/ we see 
that 

G ,+;Ek IPI l&II 141 ICI* 
q@F 

To estimate ]]r]12 we use Minkowsky’s inequality; see [ 18, p. 1231, Let & = i& if 4 is 
not in F and zero otherwise. Then 

II’42 G (?-1 (x IPl i& lk-Pi ir,,/)’ 
k P 

< 2.c (c 1412 lcq12)‘;2. 
q@ 

581/40/2-4 
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By combining this result with (1.4) and using ]cJ(* < ]c~]~/N~ for all 4 not in F we 
arrive at the statement in the theorem. This completes the proof. 

The technique presented in this section does not extend to three dimensions 
because the vorticity is not conserved in three dimensions. However, a proof using 
instead the conservation of energy can be generalized. In Section 2 we will present 
such a proof, but in a more abstract language. Theorem 1 implies the convergence of 
the computed velocity field, with rate of convergence l/A@. This result is not optimal 
and is improved in the next section. 

2. CONVERGENCE IN Two AND THREE DIMENSIONS 

In this section we will prove the convergence of the Fourier method for Euler’s 
equations and for Navier-Stokes equations in two and three dimensions. We 
formulate the result for Navier-Stokes equations in three dimensions, but most of the 
proof is independent of the dimension. The flow of an incompressible, viscous fluid 
satisfy the Navier-Stokes equations 

&l 
at+(u.v)u=-vp+vAu, (2.1) 

div u = 0, (2.2) 

where u = U(X, t) is the velocity, p is the pressure and v is the viscosity. We use the 
notation u . V = JJ ujDj and Au = JJ Dj’u with Dju = &/axj. We look for solutions 
u = (ui) and p with period 27t in each space variable. By taking the-.divergence of 
(2.1) and using Eq. (2.2) we see that 

Ap=-V. (u. V)u. (2.3) 

The pressure is therefore determined up to a constant and can be eliminated. We say 
that the solution u is in Hm( r,) if D”u is square integrable over T,, for all 1 a ] = m. 
Here D” = 071 ..a D,““, la/ =a1 + a.. + a, and T,, is a cube in R” with sidelength 27~ 
Ebin and Marsden [7] have shown that if the initial data u(x, 0) are in H*(T,) with 
m > n/2 + 5 and satisfy Eq. (2.2), then there exists a unique solution of (2.1-2.2) for 
a short time interval (independent of v). The solution u(x, t) is in H” and differen- 
tiable wrt t. Moreover, the solution of Navier-Stokes equations converges to the 
solution of Euler’s equations as the viscosity tends to zero. Similar results have been 
obtained for R* and R3 by McGrath [28] and Kato [21]. 

The Fourier method can be derived as follows. We expand the solution u in a 
Fourier series and let P be the projection 

PU = PC ~k&k.~ = C Ukeik.x, 

keF 
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where F is the set of frequencies k for which ] k 1 < iV. Let 
t then the Fourier-Galerkin method is 

$ + P[(v * V)v] = -vq c VAV, 

div v= 0. (2.5) 

Our convergence proof depends on three properties of P, namely, that Pu -+ zk as 
N-7‘ CX, that DjP = Pej and that sv . Pu = J” v . U. Since P commutes with di~ere~- 
tiation we see that the pressure 4 can be eliminated by the analogue of Eq. (2.3) 

Aq = -P[V . (v . V)v]. cw 

It follows from Eqs. (2.4) and (2.6) that the Fourier coefficients uk of z) satisfy a 
system of ordinary differential equations, namely, 

$t v jkl’) vk= -i c krvp(l’- kk’/jkj’) us; (2.7) 
p+i?=F 
P,q@ 

see Kraichnan [22]. The initial conditions are given by v = Pu and satisfy Eq. (2.5). 
In addition we assume that a0 = 0. This assumption is both natural and convenient. It 
implies that U, = v0 z 0 for all time, and this fact simplifies our proof a little. 
deeper level the assumption makes the theory of Navier-Stokes equation on do 
with periodic boundary conditions similar to the theory for compact domai~s~ For 
example, in the periodic case the viscous solution tends to u,, as t tends to in 
whereas the solution for bounded domains always tend to zero, see [ 34, p. 3 1 S]. 
important is that if u,, # 0 then Poincare’s inequality fails and this inequality is used 
repeatedly in the mathematical theory. 

THEOREM 2. Let u and v be the solutions of (2.1-2.2) and (2.4-2.5) with 
w. = v. = 0 and II = 2 or 3. Let A = maxogzGt C lkl ]uk /. If u(x, 0) is in Hm(Tn) with 
m > 3 then 

Let I=VXu and w=Vxv. If [(x,0) is in fP(T,) with m > 2, then A = 

maxoGTGt C Ll and 
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Remark. The assumption on u implies that A < co, [3 1, p. 2491. Thus the Fourier 
method converges as N tends to co, provided the mathematical solution exists and is 
sufficiently smooth. Note that c is in Hm iff u is in Hm+‘. The rate of convergence of 
the vorticity is the same as in Theorem 1, but the bound is sharper, since in general 
A < C. 

ProoJ Let w  = II - Pu be the error. By applying P to both sides of Eq. (2.1) and 
using Eq. (2.4) we see that 

~+P[w.o~+Pu.vw+w.vPu]=--o(q--pp)+vdw+Pr, (2.8) 

where Y = u . Vu - Pu . VPu. To estimate the error we introduce two inner products 
and the corresponding norms 

((‘3 ‘))= fJ JD,UiDjBi, 
i,j= 1 

I/uI/H= (2: I(Dj~ilI*)“‘s 
ii 

Note that I] . ]IH is really a norm because u0 = v,, = 0. By using Eq. (2.8) we see that 

+&v,w)=(w,-P[w.vw+Pu.vw+w.vPu]-V(q-Pp)+vdw+Pr). 

Since (w, Pu) = (w, u) and div w  = 0 we find after integrating by parts that the 
contributions from the first, second and fourth term on the right hand side of this 
equation are zero. Thus 

+g (w, w) = -(w, w * VPU) - v((w, w)) + (Iv, Y). 

From this point on, the proof is similar to a convergence proof for a linear problem. 
By using Schwarz inequality and v > 0 we find that 

(2.9) 

To complete the proof we use that the Fourier series for Dju converges. Since 

IIDjPUillm G C lkjl IUikl we can estimate the first term in (2.9) by 

(2.10) 
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Our next goal is to estimate the truncation error. Since Y = QU D VU - Pu . V 
Q = I-P we see that the last term in (2.9) is less than 

C II Will II QujII IIDjuiIIm + C II WiII IIpUjIIcc IPj (2.11) 
id i..i 

The first term is treated like (2.10) and less than A 11 Quli, /j WI/*. The second term in 
(2.1 I) can be estimated as 

F IujAT IIWiII IIDjQuiII <x C Iuj,I II~jQdi,IIwII, 
k j  

Since Ck I ukl < A and Ii Qu IL < iI Qu IIN we see that (2.1 I) is less than 24 // (2~11~ j/ ~1;~. 
Thus it follows from (2.9) and (2.10) that 

By solving this differential inequality we get 

IIwII~<~(~~- 1) max IiQull,. 
O<r<f 

(2. a%) 

To estimate the rate of convergence we use the smoothness of U. It follows from 
Parseval’s theorem that 

=---!--- / ; $ (2n)” x k2” ltdkl* 
J.q2m-2 

c1 m  k@F 

,y; IP”Qu!lf a a 

gre k2” = kf”I . . . ,l$“n. We can now estimate u - U. Since Ij Qulj, < j/ QuljH we see 
that 

llv-ull2~ll~-~~l/2+ll~~--ll2 

< 2(eAf - 1) oy~~f II QullH + I! QuII2 
. . 



314 OLE H.HALD 

This completes the proof for the convergence of the velocity field. We will now study 
the convergence of the vorticity field. Since [ = V x u and div u = 0 we see that the 
Fourier coefficients & of c satisfy ]&] = ]k] ] uk]. Thus it follows from Parseval’s 
theorem that ]] & = ]] u ]IH. By using that ]k] <N for k in F, Eq. (2.12), Parseval’s 
theorem and that ] kJ > N for k not in F we get 

This inequality corresponds to (2.12) and the final result is obtained by repeating the 
previous arguments with u replaced by f This completes the proof. 

The convergence of the velocity field is valid for higher space dimensions provided 
m > n/2 + 1. By copying the mathematical theory for the Navier-Stokes equations 
we can prove the convergence under weaker smoothness assumptions on the data; see 
[25] and [34]. There is also a rich opportunity to use sophisticated results for the 
convergence of Fourier series. It is reasonable that the numerical solution is less 
accurate than simply truncating the Fourier series of the solution. The loss of one 
derivative also occurs in the error estimates for the solution of hyperbolic systems 
obtained by the Fourier method, see 1241. Our proof is based on the cutoff I kl <N. If 
another cutoff is used then N should be interpreted as the smallest value of I kl for k 
not in F. In addition, the error bound for the vorticity will have an extra factor, 
namely, maxkeF I k ]/min,,, ) kl. If the cutoff is I kil < N for i = l,..., II, then this factor 
is nl/’ For the cutoff suggested by Orszag [30], the octodecahedron, the factor is 
213 lj2.’ 

3. REFORMULATION OF THE FOURIER METHOD 

In this section we will show that the results of the Fourier method can be inter- 
preted as obtained by the projection method. It is not obvious that the two methods 
are equivalent. In the projection method the approximate solution is written as a 
linear combination of divergence free linearly independent functions. In the Fourier 
method the pressure is determined such that the divergence of the solution is zero, but 
the basis functions are linearly dependent. We will give a set of orthonormal basis 
functions and show that the approximate solution of the projection method satisfies 
the differential equations for the Fourier method. We will present the arguments in 
three dimensions, and mention the results in two dimensions. 

Since div v = 0 and u,, = 0 there exists a function B such that div B = 0 and 
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u = v x B. In addition AB = -5, where I = V x 24. By expanding B in a Fourier series 
we find 

and uk = iS,b,. It is our goal to express S,b, as j k j A,fi,, where /I, is a vector with 
two components, k . A, = 0 and the columns of A, are orthonormal. Let cz = k//k/. 
Then 

Observe that Si = -3, and that S,a = 0. To find Ak we use the singular value 
decomposition of S,, i.e., S, = UAVT, where U and V are orthonormal and A is a 
real diagonal matrix. Since V consists of the eigenvectors of STS and S’S = P - a& 
we see that (x is the eigenvector corresponding to the eigenvalue 0 and the other two 
eigenvectors correspond to the eigenvalue 1. To determine V we use Eouseho~der’s 
transformation, i.e,, V = I - 2wd, where W~YQ= 1. Eel (I -- 2kvw’) e3 = --(~a: where 
e3i = 6,, . Here (r = sign(q) if erg # 0. If a3 = 0 then B = signja,). “af CQ = CQ = Cg then 
we set 5 = sign(a,). Thus 

a:+a:+-[a,( --aIa2 
v= 

1 

f + IG i 
---cL1a2 c.xf+cf~+~a,i 

-oa,(l +]a,]) -~a,(1 + ;a3]) -ua,(B i la3)) 

The complicated definition of u implies that V does not change if LY is replaced by 
--GI. To determine U we use that SV= Udiag(l, 1,O). The last column of U is 
~nd~icrrn~ned, but we may take 

This completes the singular value decomposition of S, s Let V = (cl : u19 cj), Since 
Y = VT we see that S,b, = 1 k} A,$,, where A, = (a$‘) are the first two columns of U 
and Plk = v, . b, and /JZk = u2 . b,. Note that v3 . b, = 0 as div B = 0, We can XIOW 
write 
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Since the matrix U is orthonormal we have found a representation of u in which the 
basis functions are orthogonal and divergence free. The corresponding representation 
in two dimensions is 

where Lk are the Fourier coefficients of the vorticity 5 = D, u2 - D,u, . 
The projection method is based on the weak formulation of Navier-Stokes 

equations. Assume that u and p are the solution of the Navier-Stokes equations and 
let v be a smooth, 271 periodic function which satisfies div v = 0. By multiplying 
Eq. (2.1) with 5, integrate over T3, and integrate by parts on the right-hand side of 
the equation we see that 

Ui~i $ VC Dj~iDj~i + C ~jDj~iBi= 0. 
i,j iJ 

(3.4 

Note that the pressure term has disappeared. We look for an approximate solution u 
of the form (3.1), where the sum is restricted to all k in F: To determine the coef- 
ficients Pk(t) we require that Eq. (3.2) be satisfied for all test functions v with 
components vi = a@’ exp(ik . x), where k is in F and j = 1 or 2. This construction of 
an approximate solution of Navier-Stokes equations goes back to Hopf [20]. By 
using the orthogonality of the test functions we get 

(3.3) 

At first sight this non-linear system of ordinary differential equations seems quite 
different from Eq. (2.7). However, by multiplying both sides of Eq. (3.3) with i I kl A, 
and using that uk = i ) kl A,P, we obtain 

Since U, = (Ak I a) and U, Uz = I we see that A,A,T = I - kkT/Ik12. Thus it follows 
from the last equation that the projection method is equivalent to the Fourier method 
in which the pressure term has been eliminated. Similar arguments show that the 
projection method for two-dimensional inviscid flow reduces to Eq. (1.2). 
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